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Supplementary Combinatorics Problems

Problem 1. Show that the number of ways in which
two people can divide 2n things of one kind, and
2n of another kind, and 2n of a third kind, so
that each person gets 3n things is 3n2 + 3n+ 1.

Answer. All 7 ways for n = 1 with A,B,C being the
3 kinds of things, is shown in table 1. The table

person 1 person 2
ABC ABC

1 111 111
2 021 201
3 012 210
4 201 021
5 102 120
6 210 012
7 120 102

Table 1: All 7 ways for n = 1 in problem 1.

provides the perspective to state the problem a
different way: In how many ways can you dis-
tribute 3n identical balls into 3 distinct bins so
that no bin contains more than 2n balls?

By way #2 of the twelve fold way, the number
of ways to distribute 3n identical balls into 3 dis-
tinct bins is

(

3n+2

2

)

.
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The number of ways to distribute the balls so that
at least one bin has more than 2n balls is 3

(

n+1

2

)

.
To get this expression set aside 2n + 1 of the 3n
balls and distribute the remaining n−1 balls into
the 3 bins in

(

n+1

2

)

ways. The remaining 2n + 1
balls can then be put into one of the bins in 3
ways.

The number of ways to distribute the balls so
that no bin has more than 2n balls is then

(

3n+ 2

2

)

− 3

(

n+ 1

2

)

= 3n2 + 3n+ 1

Problem 2. Give a combinatorial proof of the follow-
ing identity

n
∑

k=0

(

n− k +m− 1

m− 1

)

=

(

n+m

m

)

Answer.
(

n+m

m

)

is equal to the number of ways to dis-
tribute n indistinguishable objects into m+1 dis-
tinguishable bins. Pick one of the bins. Over the
set of all distributions that bin will hold between
0 and n objects. If it holds k objects then the
remaining n − k objects will be distributed into
the other m bins in

(

n−k+m−1

m−1

)

ways. Summing
this over all the values of k we get the identity.

Problem 3. Given a collection of n identical red balls,
n identical green balls and n identical blue balls,



3

in how many ways can the 3n balls be distributed
into 3 bins such that each bin contains exactly n
balls?

Answer. We only need to count the number of ways to
distribute n balls into each of two bins since the
remaining n balls will then go into the remaining
bin. This is equivalent to asking for the number
of ways to distribute n identical balls into bins
labeled R1, G1, B1 and n identical balls into bins
labeled R2, G2, B2 such that |R1| + |R2| ≤ n,
|G1| + |G2| ≤ n, |B1| + |B2| ≤ n. The verti-
cal bars around a bin label means the number of
balls in that bin. Without these restrictions each
of the distributions of n balls can be done in

(

n+2

2

)

ways so the total number of ways to distribute the
2n balls without restrictions is

(

n+2

2

)(

n+2

2

)

. From
this we have to subtract the number of distribu-
tions in which one of the conditions |R1|+ |R2| >
n, |G1| + |G2| > n, |B1| + |B2| > n holds. Note
that since there are 2n balls only one of the condi-
tions can hold for a given distribution. Suppose
for example that we have |R1| + |R2| = n + k
where k = 1, , 2, . . . , n. The rest of the n − k
balls can be distributed into the remaining 4 bins
in

(

n−k+3

3

)

ways. Summing this over all values of
k we get the total number of ways that we can
have |R1| + |R2| > n. Using the combinatorial



identity proven in the previous problem we have

n
∑

k=1

(

n− k + 3

3

)

=

(

n+ 3

4

)

To put this in the form of the identity change the
summation index to k′ = k − 1. So that we have
(dropping the prime on k)

n−1
∑

k=0

(

n− 1− k + 3

3

)

=

(

n− 1 + 4

4

)

=

(

n+ 3

4

)

The total number of ways to distribute 3n balls
into 3 bins such that each bin contains exactly n
balls is then

a(n) =

(

n+ 2

2

)(

n+ 2

2

)

− 3

(

n+ 3

4

)

where the 3 multiplying
(

n+3

4

)

comes from the
fact that we 3 conditions that have to be ac-
counted for. We can also write the answer with-
out the binomials as

a(n) =
1

8
(n+ 1)(n+ 2)(n2 + 3n+ 4)

Table 2 shows the value of a(n) for n = 0, 1, . . . , 8
and table 3 shows the 21 ways to distribute the
balls {rrggbb} into 3 bins with 2 balls per bin.
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n 0 1 2 3 4 5 6 7 8
a(n) 1 6 21 55 120 231 406 666 1035

Table 2: a(n) values.

Bin 1 Bin 2 Bin 3
rr gg bb
rr gb gb
rr bb gg
rg rg bb
rg rb gb
rg gb rb
rg bb rg
rb rg gb
rb rb gg
rb gg rb
rb gb rg
gg rr bb
gg rb rb
gg bb rr
gb rr gb
gb rg rb
gb rb rg
gb gb rr
bb rr gg
bb rg rg
bb gg rr

Table 3: The 21 ways to distribute the balls {rrggbb}
into 3 bins with 2 balls per bin.



Problem 4. In how many ways can 6 lilies, 7 roses
and 10 tulips be arranged in a row so that each
lily is between a rose and a tulip, and there are
no roses and tulips next to each other?

Answer. Let L represent a lily, and R and T represent
a group of roses and tulips respectively. There are
then 2 possible arrangements: RLTLRLTLRLTLR,
TLRLTLRLTLRLT . Call these arrangements 1
and 2 respectively. In arrangement 1 there are 4
R groups and 3 T groups. The ways to divide
7 roses into 4 groups with at least one in each
group is

(

6

3

)

. The ways to divide 10 tulips into

3 groups with at least one in each group is
(

9

2

)

.
The total number of ways to create arrangement
1 is then

(

6

3

)(

9

2

)

. In arrangement 2 there are 3
R groups and 4 T groups. The ways to divide
7 roses into 3 groups with at least one in each
group are

(

6

2

)

. The number of ways to divide
10 tulips into 4 groups with at least one in each
group is

(

9

3

)

. The total number of ways to cre-

ate arrangement 3 is
(

6

2

)(

9

3

)

. The total number of
arrangements is then

(

6

3

)(

9

2

)

+

(

6

2

)(

9

3

)

= 1980



Combinatorial Physics Problems

In quantum mechanics, particles (electrons, protons,
atoms, etc.) that are bound by a potential energy func-
tion will have discrete energy levels. A particle in a box
where the walls are infinite potential energy barriers is
probably the simplest example. In the one dimensional
case the particle is confined to a one dimensional re-
gion of some fixed length. The energy levels of the
particle are limited to the values En = an2 where a is
a constant and n = 1, 2, 3 . . ..

Another example is the energy levels of an electron in a
hydrogen atom. The electron is limited to the energies
En = −13.6/n2 where n = 1, 2, 3 . . .. A system where
the energy levels are equally spaced is the quantum
harmonic oscillator which corresponds to the classical
system of a particle oscillating on the end of a spring.
Here the energy levels have the form En = an+b where
a and b are constants and n = 0, 1, 2, . . ..

So in general a particle in a quantum system will have
one of a set of discrete energy levels En. At each energy
level there will be a finite set of states the particle can
be in. These states may correspond for example to
allowed angular momenta for an electron bound to an
atom. For the sake of the following discussion, you can
picture the particles as being organized into boxes on
a set of shelves. Each shelf is an energy level and the
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the boxes on the shelf are the states. In general each
shelf may have a different number of boxes.

The properties of a system composed of a very large
number particles is determined by the way the parti-
cles distribute themselves among the energy levels and
states. That distribution is determined by the total
energy of the system and by the type of particles. In
quantum mechanics there are two types of particles
called bosons and fermions with very different rules for
how they may occupy states.

Bosons have no restrictions on how many of them may
occupy the same state simultaneously. Any number
of them may bunch up together in the same state.
Fermions on the other hand are more standoffish. Only
one fermion may occupy a given state at a time. These
properties of bosons and fermions determine the to-
tal number of ways they can be distributed among the
states.
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